
Mechatronics
MMME3085

Module Convenor – Abdelkhalick Mohammad

Introduction: Overview;
introduction to the Arduino

Lecture 1

Know Your Teacher!

2

Birth, Egypt

1984

B.Sc. AUN, Egypt

2006

TA, AUN, Egypt

2007

M.Sc. TUT, Japan

2010

Ph.D. TUT, Japan

2013

Postdoc, NTU, Singapore

2014

Assist. Prof. AUN, Egypt

2017

Postdoc, RR-UTC, UK

2018

Assist. Prof. UoN, UK

2020

Associate Prof. UoN, UK

2023

Introduction

Module overview

Description of the Module

Mechatronics:

Computer engineering:

1.Software design; planning a program

2.Programming in the C language

3.Version control, documentation etc.

Controller: (1) Microcontroller: Computer architecture, digital or
analog input & output; timer-counters. (2) Field programmable gate

arrays (FPGA) and programmable logic controller (PLC)

Actuators & Sensors: DC &
stepper motors, encoders, LVDT,

thermocouples, drivers, etc.

Interfacing: Digital-to-analog
and analoge-to-digital, serial,

parallel communication

Objectives of the Module

• Understand and select the hardware and methods used for data
conversion and transmission in mechatronic systems.

• Control the electronic and electromechanical hardware
(sensors, transducers, actuators and motion control hardware)
involved in interfacing electromechanical systems to computers.

• To apply the principles of software engineering via the use of
sound program design, development, version control, documentation
and testing

• Attain a reasonable proficiency in using high level programming
languages to create a solution to an instrumentation or
mechatronics problem.

• To have a basic appreciation of objects and classes with reference
to driver objects for specific interfaces for microcontrollers

How teach in this Module?

• Convener, Mechatronics:

▪ Dr Abdelkhalick Mohammad

▪ Room B37, Advanced Manufacturing
Building

• Co-teacher, C programming:

▪ Dr Louise Brown,

▪ Room C18, Advanced Manufacturing
Building

• Co-teacher, Laboratory:

▪ Dr Surojit Sen

▪ Room B90 Coates Building

Module Assessment

• Assessment:

▪ 20 credits

▪ Final Exam: 55% (January)
o Section A (Programming, via software)

o Section B (Mechatronics, written exam)

▪ Laboratory exercises
o Preparatory programming work: 5% (Lab 1)

o Comprehension Quiz Lab 1: 7.5%

o Comprehension Quiz Lab 2: 7.5%

▪ Software-based project
o Software Project preparatory work:5%

o Final Software Project: 20%

Module Plan

w/c ↓ UniversityTeaching Lecture Lab Lecture Seminar Lab-1 Lab-2 Lab-5 Lab-6

Room → Chemistry C15 Coates C19 Psychology A1 Psychology A1

Time → Mon 13-15 Tues 11-13 Thurs 9-11 Fri 13-14 Wed 9-11 Wed 11-13 Fri 14-16 Fri 16-18

25-Sep 1

02-Oct

2 1

Design Principles

C part 1: VSCode and

Hello World

Getting started

with C

Laying the

Foundations

Laying the

Foundations

09-Oct

3 2
Lab 1 programming

intro (5%)

C part 2: Operators,

printf/scanf and

conditional statements

C part 1 & 2

Comp

architecture;

digital signals

(parallel); digital

i/o;

Comp

architecture;

digital signals

(parallel); digital

i/o;

Collect kit

(group-3)

Collect kit

(group-4)

16-Oct

4 3
C part 3: Loops, arrays

and functions
C part 2

Counter-timers;

digital signals:

serial protocols

Counter-timers;

digital signals:

serial protocols

23-Oct

5 4

Lab 1 programming

submission Thurs 26

Oct (5%)

C part 4: Memory and

pointers
C part 3

Sequences, state

tables, finite state

machines

Sequences, state

tables, finite state

machines

30-Oct

6 5
C part 5: functions using

pointers
C part 4

Analog signals,

data acquisition:

aliasing,

grounding

Analog signals,

data acquisition:

aliasing,

grounding

06-Nov

7 6
Software project

prep intro (5%)

C part 6: structures;

projects
C part 5

Data conversion

including PWM;

sensors

Data conversion

including PWM;

sensors

Lab-1

(group-1)

Lab-1

(group-2)

Lab-1

(group-3)

Lab-1

(group-4)

13-Nov

8 7

Lab 1 comprehension

quiz Thurs 16th Nov

(7.5%)

C part 7: numbers,

enums and conditional

compilation

C part 7; project

Motion Control:

Servo Motors,

closing the loop

Motion Control:

Servo Motors,

closing the loop

20-Nov

9 8

Software project prep

submission Tues 21st

Nov (5%)

Command line

arguments and code

optimisation

C part 8; project

Stepper motors;

drivers;

Bresenham and

ramping

Stepper motors;

drivers;

Bresenham and

ramping

27-Nov

10 9 Software best practice Project

Stepper motor

dynamics.

Solenoids,

pneumatics,

hydraulics.

Stepper motor

dynamics.

Solenoids,

pneumatics,

hydraulics.

Lab-2

(group-1)

Lab-2

(group-2)

Lab-2

(group-3)

Lab-2

(group-4)

04-Dec

11 10

Lab 2 comprehension

quiz Thurs 7th Dec

(7.5%)

Project

Interrupts and real-

time issues;

FPGAs

Interrupts and real-

time issues;

FPGAs

Robot Testing

(15 min slots)

Robot Testing

(15 min slots)

Robot Testing

(15 min slots)

Robot Testing

(15 min slots)

11-Dec

12 11
Software project

submission Thurs 14th

Dec (20%)

Consolidation and

revision
Project

Consolidation and

revision

Consolidation and

revision

Robot Testing

(15 min slots)

Robot Testing

(15 min slots)

18-Dec 13

25-Dec 14

01-Jan 15

08-Jan 16

15-Jan 17

22-Jan 18
Final Exam 55%

Week Assessment

No teaching

Mechatronics

JC AMB C09/10

Programming

Introduction

Mechatronics

What is Mechatronics?!

• “Mechatronics is the synergistic combination of precision mechanical
engineering, electronic control and systems thinking in the
design of products and manufacturing processes. It relates to the
design of systems, devices and products aimed at achieving an
optimal balance between basic mechanical structure and its overall
control”. Journal of Mechatronics.

• “Mechatronics is a technology which combines mechanics with
electronics and information technology to form both functional
interaction and spatial integration in components, modules, products
and systems” (Buur, J: A Theoretical Approach to Mechatronics
Design. Dissertation, Technical University of Denmark, Lyngby 1990)

What is Mechatronics?!

Want To Become A Mechatronics Engineer?

• To be a Mechatronics Engineer you need
to be able to work across the boundaries
of constituent disciplines to identify and
use the right combination of technologies
which will provide the optimum solution
to the problem in hand.

• You should also be a good communicator
and able to work in and lead a design
team which may consist of specialist
engineers as well as generalists.

www.imeche.org

www.howtoabroad.com

http://www.imeche.org/
http://www.howtoabroad.com/

Mechatronics System Examples

• Computer Numerical Controlled (CNC) Machines

• Robots (e.g., industrial, mobile, soft, human-like, etc)

• 3D printers

• Automatic driving cars/vehicles

• Single-lens Reflex (SLR) digital camera

• Hard drive

• Writing robot or desktop plotter - your job will be to program this!

Mechatronics System Examples

3-Axis CNC Machine 5-Axis CNC Machine

Mechatronics System Examples

www.matterhackers.com

3D printer

www.robots.com

Industrial Robots

http://www.matterhackers.com/
http://www.robots.com/

Mechatronics System Examples

Nature-inspired Robots

Mechatronics System Examples

Nature-inspired Robots

Mechatronics System Examples

Camera

Force sensor
Encoder

(position sensor)

Motor

Mechanical structure

Industrial

controller

Feed drive system Linear encoder

Motor & Driver

High level control

Advanced Manufacturing Systems

Mechatronics System Examples

Desktop Plotter or Writing Robot

www.tomtop.com

Your job will be to program this!

http://www.tomtop.com/

A Typical

Mechatronics

System

Basic Elements

A typical Mechatronics System

Computer
or micro-
processor

Program
e.g., in C

Buses
in
computer

Digital
signal

Analogue
signal

Digital
signal

Digital
signal

Analogue
signal

Digital signal

Digital
output
inter-
face;
timer

DAC Electronic
hardware

Actuators

Mechanical
system

Digital
input
inter-
face;
counters

Sensors

ADC Electronic
hardware

1,4,10

 2,3,10
 5,6

7,8,9

Revision

Revision of basic electronics

Revision of basic electronics

• The resistor: if a current I passes through a resistor
of value R, a voltage V will appear across it (Ohms law)

• Similarly, V will cause a current I to flow

V=IR
I=V/R etc. V

I

R

Revision of basic electronics

• The capacitor: if a voltage V is applied across a capacitor
with capacitance C, a charge Q flows into the capacitor.

• In general: charge = current time

 (actually, an integral)

Q=CV or V=Q/C
where Q= I dt

V

I

C

Revision of basic electronics

• The inductor: if the current through an inductor L
changes at rate dI/dt a voltage V will appear across the
inductor

V=L dI/dt VL

Revision of basic electronics

• The diode: acts like a one-way valve or check valve
(current can flow one way only)

• Not a perfect forward conductor: silicon diode voltage
drop typically 0.7 V (for any non-zero current)

0.7V

I

Revision of basic electronics

• The transistor: a current between base and emitter causes
the transistor (with gain hFE) to conduct between collector
and emitter

ICE
IBE

Revision of basic electronics

• For zero IBE , acts like an open (off) switch

• For large IBE , acts like a closed (on) switch

off on

ICEIBE
ICE 0 ICE

IBE=0 IBE

>0

Revision

Digital electronics & Boolean logic

Digital electronics & Boolean logic

• Computers are made up of very
large numbers of logic gates

• We will revisit this in due course
in much more detail

• But first we need to revise:

➢ Boolean logic

➢ Truth tables

➢ Logic gates (physical and
conceptual)

Digital electronics & Boolean logic

• The main Boolean operations we will consider
are:

• NOT (inverter)

• AND

• OR

• Behaviour represented using truth tables

• Can also be illustrated via timing diagrams

Digital electronics & Boolean logic

Input Output

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X

Y

Z

Usual

symbol for
AND gate

Digital electronics & Boolean logic

Input Output

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X

Y

Z

Usual

symbol for
AND gate

Digital electronics & Boolean logic

• Boolean algebra (or logic) involves
operations on TRUE/FALSE states

• In digital electronics:

• Boolean logic is performed by
logic gates

• Typically: TRUE is represented
by a wire at around 5v

• FALSE is represented by a wire
at around 0v (earth potential)

Digital electronics & Boolean logic

• May be considered to represent ’scope trace

• Timing diagram representation of an AND
gate:

X

Y

Z

Revision

Numbers in computers

Binary numbers and logic

• In practice, logic signals may be either:

• single items of Boolean data or
signals

• groups (usually in multiples of 8
“bits”) of Boolean data representing
a number in binary form

• As well as representing data, binary
numbers are used to represent
instructions for a computer or
microprocessor

Hexadecimal notation (“hex”)

• Writing binary numbers e.g.

 11111010000101000010011010110011

 is awkward and error-prone.

• Introduce “hex” notation: 0-9 take usual
meaning, A=ten, B=eleven, C=twelve etc. up
to F = fifteen

Hexadecimal notation (“hex”)

Dec Bin Hex Dec Bin Hex

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F

A Typical

Mechatronics

System

Controller: Hardware

Computers and microprocessors

• All these examples involve mechanical
equipment being controlled by a computer

• In practice the computer may be:

• A PC

• An embedded microprocessor
(microcontroller) running code directly e.g.,
Arduino

• A system running a real-time operating
system (e.g., the Compact RIO) – no
distractions e.g., mouse or anti-virus

• An FPGA – not really a computer at all!

Computers and microprocessors

• Arduino microcontroller (Mega, Uno and Nano)

Arduino Mega 2560

• The Arduino hardware we’ll be
using

• Really just a microcontroller
chip on a board

• An AVR Atmega 2560
microcontroller (computer on a
chip)

• Mounted on a circuit board with
clearly labelled connections

Arduino Mega 2560

• Only enhancements to basic Atmega chip are:
• A USB interface to allow programming and

communication

• Some special code (“bootloader”) to load code

• A reset button and an LED on one output line

• Voltage regulator

• The Atmega 2560 incorporates:
• Digital input and output

• Analog input, “Analog output” (or something
equivalent i.e., PWM – pulse width modulation)

• Numerous programmable features for pulse
generation etc.

A Typical

Mechatronics

System

Controller: Software

Microprocessors Programming

• Usually program a microprocessor via some form of
language, traditionally text-based:

– Assembly language: “mnemonics” which contain very detailed
instructions each of which is translated into a single instruction
machine code using an assembler.

– High-level language e.g., MATLAB, Python, C, C++: language is
human readable and oriented to the problem not the
programming task, translated into machine code using
compiler

– We’ll use the Arduino variant of C/C++

Microprocessors Programming

• Used to program the Arduino series of microcontrollers
including the Mega 2560

• As we’ve already said, it is essentially the C language

• Written and compiled within the Arduino integrated
development environment (IDE)

• An easy-to-use programming interface which does
roughly same job as VSCode (Louise Brown) but for

Arduino

Arduino IDE

• Text editor

• Menus to select files, board etc.

• Buttons to compile & upload
code

• Serial monitor: the nearest we
have to text input and output on
the PC

A Typical

Mechatronics

System

Controller: Software – Simple Example

The Arduino language

• A conventional Arduino program to “Hello World”

The Arduino language

• Mostly the same syntax

• Different top-level structure – no main()

• and different input/output statements:

A Typical

Mechatronics

System

Controller: Software – Setup & Loop

Let’s pull the sketch apart…

• We have two function definitions

• In each case they are trivially simple:

• Don’t take any parameters so () are empty

• Don’t return any value so declared as void()

• The code they contain between {…} is
executed each time the function is called

• Nearly every statement finishes with a
semicolon ; except function definitions & {…}

Let’s pull the sketch apart…

• We have one simple function call

• Takes one function parameter, delay in milliseconds

• It doesn’t return any value (it’s a void function)

• We also have an “object”, Serial, for which

we call two of its functions or “methods”:

• Note: “pure C” doesn’t have objects, they are
a C++ feature we’ll use occasionally.

Let’s put the sketch back together…

• Comments are preceded by //

• Also, long comments can be enclosed with

/* … */

Another easy Arduino sketch: “Blink”

• Pre-loaded on every Arduino you buy

A Typical

Mechatronics

System

Controller: Software – More

More about the Arduino language

• In principle, that is all I should teach you

• Louise will do the C language itself with you,
starting soon!

• To keep us going, we need to learn enough to
“get by in C”

Variable types in the Arduino

• Unlike MATLAB, variables in C and Arduino
must be declared up-front to have specific
types, for example, signed and unsigned
integers:

int a; // -32768 to 32767

long b; // -2147483648 to 2147483647

unsigned int c; // 0 to 65535

unsigned long d; // 0 to 4294967295

Variable types in the Arduino

• Similarly, we can have floating point numbers
(always signed, of course):

float f; // -3.4028210−38 to 3.402821038

double g; // same as above in Arduino only

• Single characters are stored as an integer
number representing ASCII code e.g. A is 65:

char h; // -128 to 127

Variable types in the Arduino

• Sometimes we wish to store only an 8-bit
unsigned number, known as a byte:

byte a; // 0 to 255

• And sometimes we just wish to store a value
which is either true or false:

bool a; // true or false

Declaring & initialising at same time

• Quite often we want to set the value of a
variable at the same time as we declare it:

int a = 42; // the meaning of life

long b = 0; // initial position

byte mask = 0xF0 // Hex: means 11110000

• And sometimes we want the value to stay
constant and to be impossible to change:

const float e = 2.7182818; //log base

Variable scope

• Variables only exist in the “scope” in which
they are declared

• In practice, a variable within a function only
exists in that function

• To be visible anywhere else it must be passed
as a function parameter. But setup and loop

don’t have parameters so how can they share
data?

Variable scope

• Any variable
declared
OUTSIDE of any
functions is
visible
EVERYWHERE!

• It is a global
variable

• (Just don’t do
this for Louise…)

Manipulating variables: arithmetic

• More or less the same as in MATLAB:

Addition +

Subtraction -

Multiplication *

Division /

Assignment e.g. a = b + c;

• And remember the big trap: equality test
uses == not = e.g. if(a==b)

Manipulating Boolean quantities

• When we are dealing with Boolean variables, we
use the operators &&, ||, !, for example

bool a=true, b=false;

a && b represents a AND b

a || b represents a OR b

!a represents NOT a i.e., the opposite of a

Manipulating bits: bitwise operations

• But sometimes we want to treat each bit
(binary digit) of an integer as a Boolean: this
is called bitwise operations

• Just does the operation one bit at a time

X 10110101

Y 00101110

X bitwise-AND Y 00100100

Manipulating bits: bitwise operations

Bitwise operations in C:

Bitwise-AND: z = x & y;

Bitwise-OR: z = x | y;

Bitwise-XOR: z = x ^ y;

Bitwise-NOT: z = ~x;

(single symbol c.f. && and || for operations

applying to whole Boolean variables)

Manipulating bits: shifting of bits

• It is very often useful to shift a binary
number left (or right) by a certain number
of bits

• Equivalent to multiplying or dividing by a
power of 2 (throwing away any remainder
or any bits that “fall off the end” or
overflow). New bits are 0. For example:

1 << 3 takes the number 00000001 and

shifts it left by 3 places to give 00001000
(equivalent to multiplying it by 23 i.e. 8)

Summary of lecture

• Module objectives and learning outcomes
presented

• Mechatronics defined and illustrated

• Basic electronics etc. revised

• Arduino language (simplified C) introduced

	Slide 1: Mechatronics MMME3085
	Slide 2: Know Your Teacher!
	Slide 3: Introduction
	Slide 4: Description of the Module
	Slide 5: Objectives of the Module
	Slide 6: How teach in this Module?
	Slide 7: Module Assessment
	Slide 8: Module Plan
	Slide 9: Introduction
	Slide 10: What is Mechatronics?!
	Slide 11: What is Mechatronics?!
	Slide 12: Want To Become A Mechatronics Engineer?
	Slide 13: Mechatronics System Examples
	Slide 14: Mechatronics System Examples
	Slide 15: Mechatronics System Examples
	Slide 16: Mechatronics System Examples
	Slide 17: Mechatronics System Examples
	Slide 18: Mechatronics System Examples
	Slide 19: Mechatronics System Examples
	Slide 20: A Typical Mechatronics System
	Slide 21: A typical Mechatronics System
	Slide 22: Revision
	Slide 23: Revision of basic electronics
	Slide 24: Revision of basic electronics
	Slide 25: Revision of basic electronics
	Slide 26: Revision of basic electronics
	Slide 27: Revision of basic electronics
	Slide 28: Revision of basic electronics
	Slide 29: Revision
	Slide 30: Digital electronics & Boolean logic
	Slide 31: Digital electronics & Boolean logic
	Slide 32: Digital electronics & Boolean logic
	Slide 33: Digital electronics & Boolean logic
	Slide 34: Digital electronics & Boolean logic
	Slide 35: Digital electronics & Boolean logic
	Slide 36: Revision
	Slide 37: Binary numbers and logic
	Slide 38: Hexadecimal notation (“hex”)
	Slide 39: Hexadecimal notation (“hex”)
	Slide 40: A Typical Mechatronics System
	Slide 41: Computers and microprocessors
	Slide 42: Computers and microprocessors
	Slide 43: Arduino Mega 2560
	Slide 44: Arduino Mega 2560
	Slide 45: A Typical Mechatronics System
	Slide 46: Microprocessors Programming
	Slide 47: Microprocessors Programming
	Slide 48: Arduino IDE
	Slide 49: A Typical Mechatronics System
	Slide 50: The Arduino language
	Slide 51: The Arduino language
	Slide 52: A Typical Mechatronics System
	Slide 53: Let’s pull the sketch apart…
	Slide 54: Let’s pull the sketch apart…
	Slide 55: Let’s put the sketch back together…
	Slide 56: Another easy Arduino sketch: “Blink”
	Slide 57: A Typical Mechatronics System
	Slide 58: More about the Arduino language
	Slide 59: Variable types in the Arduino
	Slide 60: Variable types in the Arduino
	Slide 61: Variable types in the Arduino
	Slide 62: Declaring & initialising at same time
	Slide 63: Variable scope
	Slide 64: Variable scope
	Slide 65: Manipulating variables: arithmetic
	Slide 66: Manipulating Boolean quantities
	Slide 67: Manipulating bits: bitwise operations
	Slide 68: Manipulating bits: bitwise operations
	Slide 69: Manipulating bits: shifting of bits
	Slide 70: Summary of lecture

